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Abstract
There are self-adjoint operators which determine both spectral and semispectral
measures. These measures have very different commutativity and covariance
properties. This fact opens additional possibilities with regard to the physical
meaning of such a self-adjoint operator and its associated operator measures.

PACS number: 03.65.−w

1. Introduction

It is well known that a given self-adjoint operator may occur as the first moment operator
of various semispectral measures, including its unique spectral measure. It is, perhaps, less
widely known that there are self-adjoint operators which uniquely determine not only their
spectral measures but also their semispectral measures. This situation requires us to extend the
traditional text book wisdom of quantum mechanics whereby physical quantities, also called
observables, are represented as self-adjoint operators (only).

In this paper, we wish to draw attention to the necessary extension by means of examples.
To avoid an early commitment to a particular approach to quantum observables, in the main
body of the paper we use the standard mathematical terminology of self-adjoint operators,
spectral measures and semispectral measures. The discussion on the physical meaning of the
mathematical formalism is postponed till the final section of the paper.

The use of semispectral measures (normalized positive operator-valued measures) both
in analysing actual experiments and in studying conceptual and mathematical foundations of
quantum mechanics has increased greatly during the last three decades, as can be seen by the
appearance of a number of monographs on the subject, qv [1–8] amongst others.

Though not exclusively, the need to use semispectral instead of spectral measures
(projection-valuedmeasures) is often explained, explicitly or implicitly, as resulting from some
uncontrollable aspects or statistical decisions. The results of this paper support the view that
semispectral measures have a fundamental role in quantum mechanics beyond this. For one
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thing, a semispectral measure can be assigned to observables whose ‘spectrum’ is, say, a
curved surface (of moderate regularity) which is considerably more difficult to describe in
purely operator theoretic terms.

2. Description of the problem

LetA be a self-adjoint operator, with a domain of definition D(A), and let E : B(R) → L(H)
be a spectral measure defined on the Borel subsets of the real line R and taking values on the
set L(H) of bounded operators on H.

For any two vectorsϕ,ψ ∈ H, we letEϕ,ψ denote the complex measureX �→ Eϕ,ψ(X) :=
〈ϕ|E(X)ψ〉. According to the spectral theorem for self-adjoint operators, any spectral measure
E determines a unique self-adjoint operator A, with the domain D(A), such that for any
ϕ ∈ H, ψ ∈ D(A),

〈ϕ|Aψ〉 =
∫

R

x dEϕ,ψ(x) (1)

D(A) =
{
ψ ∈ H

∣∣∣∣
∫

R

x dEϕ,ψ(x) exists for all ϕ ∈ H
}

(2)

=
{
ψ ∈ H

∣∣∣∣
∫

R

x2 dEψ,ψ(x) < ∞
}

(3)

and, conversely, any self-adjoint operatorA determines a unique spectral measure E such that
the above relations are valid. We let EA stand for the spectral measure of A, and we note that
A is the first moment operator of the operator measure EA.

Due to the multiplicativity of the spectral measure, the kth moment operatorEA[k] ofEA

is the kth power of its first moment operator A. That is, for any k ∈ N,

EA[k] :=
∫

R

xk dEA(x) =
(∫

R

x dEA(x)

)k
= (EA[1])k = Ak

where the operator equalities are in the weak sense, as in (1), with a definition for D(Ak)
analogous to that given in (3). It is also well known that the spectrum of A, σ(A), is equal to
the support, supp(EA), of EA:

σ(A) = supp(EA).

In two recent papers [9, 10] it was independently shown that there are self-adjoint operators
A which both uniquely determine and are determined by certain semispectral measures
F : B(R) → L(H) such that for all ϕ ∈ H, ψ ∈ D(A),

〈ϕ|Aψ〉 =
∫

R

x dFϕ,ψ(x) (4)

D(A) =
{
ψ ∈ H

∣∣∣∣
∫

R

x dFϕ,ψ(x) exists for all ϕ ∈ H
}

(5)

⊇
{
ψ ∈ H

∣∣∣∣
∫
x2 dFψ,ψ(x) < ∞

}
. (6)
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In other words, A is the first moment operator of the operator measure F, and F is uniquely
determined by A. Since F is not the spectral measure, the set inclusion (6) may, in general, be
a proper one4.

The self-adjoint operators A in question are of a special type, specifying and being
specified by semispectral measures F with particular additional properties. In spite of this
mutual specification, however, the kth moment operator will not be the kth power of the first
moment operator in general. In particular, it will be the case that

F [2] =
∫
x2 dF(x) �

(∫
x dF(x)

)2

= F [1]2 = A2.

It must be stressed that it is quite exceptional for a semispectral measure F to be determined
by its first moment operator F [1] = A. For a general semispectral measure F, even the
knowledge of the moment operators F [k] for all k ∈ N will not suffice to determine F.

However, if the support of F is compact then its moment operators F [k], k � 0, are
bounded self-adjoint operators and the operator sequenceF [k], k � 0, determines the operator
measure F.5 Clearly, the spectrum of A is then a subset of the support of F,

σ(A) ⊆ supp(F )

with the possibility that the inclusion is a proper one.
Given this background, we now state the extended viewpoint for quantum measurement

theory that we referred to above.
According to the usual text book formulation of quantum mechanics, physical quantities

are represented by self-adjoint operators, and, usually, even the converse is assumed (if no
superselection rules are involved): each self-adjoint operator corresponds to a physical
quantity. The mathematics just described raises the following question: if a given self-
adjoint operator A gives rise to a unique spectral measure EA and (by the formula prescribed
in [9, 10]) a unique semispectral measure F, and these two measures are not the same, i.e.,
EA 	= F , what is the relationship of the operator A and the two measures EA and F , to the
observable? If the observable is represented by the self-adjoint operator A, what is to be
understood by the differing measure representations EA and F , that it has? If, on the other
hand, observables are completely represented by measures, then what is to be made of the fact
that the self-adjoint operator A is now associated with two distinct observables, EA and F?
We shall investigate these questions by considering three sets of examples.

The first two of them give examples of the situation described above, whereas the third
illustrates the commonly accepted viewpoint that some semispectral measures associated with
a self-adjoint operator are to be interpreted as smeared, noisy, unsharp or inaccurate versions
of the observable represented by the spectral measure of the self-adjoint operator.

3. Examples

The examples that illustrate the problem arise from the theory of generalized imprimitivity
systems, also called systems of covariance. The primary examples were discussed in [9, 10].
Here we follow [12–14] to provide somewhat wider classes of relevant examples.

4 We recall that it is the positivity of the operator measure F, that is, F(X) �O for all X ∈ B(R), which implies that
the square integrability domain of equation (6) is a subspace of D(A). If, in addition, F were projection valued, that
is, F(X) = F(X)2 for all X ∈ B(R), then the set inclusion (6) would be an equality [11, lemma A.2], cf equation (3).
5 This is a well-known consequence of the Weierstrass approximation theorem and the uniqueness part of the Riesz
representation theorem.
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3.1. N-covariant semispectral measures

Let H be a complex separable Hilbert space, {|n〉}n∈N a fixed orthonormal basis for H, and let
N denote the self-adjoint operator for which N |n〉 = n|n〉 for all n ∈ N.

Consider a semispectral measure F defined on the Borel subsets of the interval [0, 2π)
and taking values in L(H). We say that F is N-covariant if it forms together with the unitary
representation x �→ eixN , x ∈ R, of the additive group of R, a generalized imprimitivity
system, that is

eixNF (X) e−ixN = F(X + x) (7)

for all X ∈ B([0, 2π)), x ∈ R, where the addition X + x is modulo 2π . (The labelling of the
covariance by N refers to the spectrum of N.)

The structure of the N-covariant semispectral measures F : B([0, 2π)) → L(H) is well
known (see, e.g., [2, 15]). Perhaps, the simplest way to characterize them is the following [12]:
F satisfies the covariance condition (7) if and only if there is a (not necessarily orthogonal)
sequence of unit vectors (hn)n∈N of H such that for any X ∈ B([0, 2π)),

F(X) =
∑
n,m∈N

〈hn|hm〉 1

2π

∫
X

ei(n−m)x dx|n〉〈m| (8)

where the series converges weakly.
It is to be noted that two sequences of unit vectors (hn)n∈N and (h′

n)n∈N determine the
same semispectral measure F exactly when 〈hn|hm〉 = 〈h′

n|h′
m〉 for all n,m ∈ N.

By a direct computation, one may easily confirm that the only commutative solution of
(7) is the scalar measure: the commutativity of F, that is, F(X)F(Y ) = F(Y )F (X) for all
X,Y ∈ B([0, 2π)), holds if and only if the generating vectors hn are pairwise orthogonal; in
that case F(X) = 1

2π

∫
X

dxI for allX ∈ B([0, 2π)).6 In particular, this means that among the
N-covariant semispectral measures (8) there is no spectral measure.

The N-covariant semispectral measures F : B([0, 2π)) → L(H) are supported by the
interval [0, 2π]. Therefore, their moment operators,

F [k] =
∫ 2π

0
xk dF(x) k ∈ N

=
∑
n,m∈N

〈hn|hm〉 1

2π

∫ 2π

0
xk ei(n−m)x dx|n〉〈m| (9)

are bounded self-adjoint operators. Since no such F is projection valued, as noted above, the
second moment operator F [2] is never equal to the square of the first moment operator F [1],

F [2] � F [1]2 F [2] 	= F [1]2 (10)

(see, for instance, [17, appendix, equation (9), p 446]).
The covariance condition (7) completely determines the structure of the semispectral

measures (8) and thus also their moment operators (9). But from (9) we see that

〈hn|hm〉 = 〈n|F [1]|m〉 i(n−m) n 	= m (11)

which implies that any N-covariant semispectral measure F is uniquely determined by its first
moment operator F [1],

F [1] = πI +
∑

n 	=m∈N

〈hn|hm〉
i(n−m)

|n〉〈m| (12)

(see [9, 10]).
6 For a full analysis of the degree of commutativity of the N-covariant semispectral measures F (see [16]).
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As a bounded self-adjoint operator, F [1] has a unique spectral measure EF [1] such that

F [1] =
∫

R

x dEF [1](x) (13)

where the integral ranges effectively over the spectrum of F [1]. The operator F [1] thus
determines both a unique N-covariant semispectral measure F and a unique spectral measure
EF [1]. A distinctive feature is that the spectral measure EF [1] cannot be N-covariant. Also,
apart from the trivial case, F is noncommutative whereas EF [1] is multiplicative and thus
commutative. We further note that supp(EF [1]) = σ(F [1]) ⊆ supp(F ).

Perhaps the most natural and important example of the N-covariant semispectral measures
F is the one associated with a constant sequence hn = h, n ∈ N. (Any unit vector will do;
see above.) This semispectral measure has been advocated by some authors as the canonical
phase observable Fcan (see, e.g., [2, 6, 9]). However, since its first moment is not canonically
conjugate to the number operator, employing the word ‘canonical’ in this context is not the
familiar textbook usage; canonicity here is with respect to the above class of semispectral
measures.

Similarly, its first moment operator7

Fcan[1] = πI +
∞∑

n 	=m=0

1

m− n
|n〉〈m| (14)

is frequently proposed as the phase operator (see, e.g., [18–20]). In this case, σ(Fcan[1]) =
supp(Fcan). The spectral measure of Fcan[1] has a rather complicated structure (see [18] for
an analysis); nevertheless it is not N-covariant. This and other candidate phase observables
are discussed at length in [24].

3.2. Z-covariant semispectral measures

Taking an orthonormal basis labelled by the set of all, and not simply non-negative, integers
leads to a class of examples similar to those obtained in section 3.1. Some new and interesting
features do arise with this choice, however. Therefore, let {|k〉}k∈Z be an orthonormal basis of
H and let Z denote the self-adjoint operator with Z|k〉 = k|k〉 for all k ∈ Z.

Extending the previous terminology, we say that a semispectral measureF :B([0, 2π)) →
L(H) is Z-covariant if it satisfies the covariance condition

eixZF (X) e−ixZ = F(X + x) (15)

for all X ∈ B([0, 2π)), x ∈ R, where the addition X + x is modulo 2π .
As in section 3.1, a semispectral measure F is Z-covariant if and only if there is a sequence

of unit vectors (hk)k∈Z of H such that for any X ∈ B([0, 2π))

F (X) =
∑
k,l∈Z

〈hk|hl〉 1

2π

∫
X

ei(k−l)x dx|k〉〈l|. (16)

The principal difference here is that among the solutions (16) of the covariance condition (15)
there are both commutative and noncommutative semispectral measures and, in addition, a
spectral measure (unique up to unitary equivalence) obtained with an arbitrary choice of unit
vector hk = h for all k ∈ Z. For each solution F, the first moment operator F [1] uniquely
determines the semispectral measure F.8

7 This operator is unitarily equivalent to the Toeplitz operator of multiplication by the independent variable on the
Hardy–Hilbert subspace of square integrable functions on the circle.
8 The structure of the moment operators are like in the N-covariant case, with the sole exception that now the
summations are over Z (cf [12]).



9118 D A Dubin et al

Clearly, the spectral measure EF [1] of F [1] is Z-covariant exactly when it coincides with
F, which is now the case for the constant sequence hk = h, k ∈ Z. In this case, the pair
(Fcan[1], Z) constitutes a Schrödinger pair, that is, the usual position–momentum operators of
a particle in a box of length 2π .

3.3. R-covariant semispectral measures

To emphasize the very special nature of the previous two sets of examples, let us consider next
the multiplicative operator Q in L2(R), (Qϕ)(x) = xϕ(x), with the domain D(Q) = {ϕ ∈
L2(R)| ∫

R
x2|ϕ(x)|2 dx < ∞}. Consider the unitary representation x �→ Ux of the real line R

given by (Uxϕ)(y) = ϕ(y − x). As is well known, the spectral measure of Q,EQ, is (up to
unitary equivalence) the unique projection-valued solution of the R-covariance condition [21]

UxF(X)U
∗
x = F(X + x) X ∈ B(R) x ∈ R. (17)

However, this covariance condition (17) can be solved for arbitrary semispectral measures
[2], and one obtains thereby both commutative and noncommutative semispectral measures
in addition to the spectral measure [14]. In particular, any convolution of EQ with a
probability density f yields an R-covariant semispectral measure of the form EQ,f (X) =
(χ

X
∗f )(Q),X ∈ B(R), f = |η|2, η ∈ L2(R), ‖η‖= 1. If the expectation value of the density

function f is zero, then the first moment operator of EQ,f equals the first moment operator
of EQ, namely Q (see, e.g., [1]). Therefore, Q cannot determine EQ,f , so the dichotomy
possible for T-covariant systems cannot occur for this class of R-covariant measures.

4. Discussion

In the approach to quantum mechanics which starts with the operational idea of a preparation
and registration procedure, one is led in a natural way to the set of states and the set of
observables being in duality. The states may be defined as equivalence classes of preparations,
the observables as totalities of measurement outcome statistics.

States may be represented as positive normalized trace class operators ρ (known as
density operators) on the configuration Hilbert space H for the system under consideration.
An observable may then be defined as a normalized semispectral measure F defined on
the relevant (σ -algebra of subsets of) space of values (measurement outcomes), typically
the Borel σ -algebra B(R) of the real line R (see, e.g., [1–3, 6]). The probability measure
X �→ Fρ(X) := Tr[ρF(X)], defined by a state ρ and an observable F, is then taken to describe
the measurement outcome statistics obtained when the same F-measurement is repeated under
the same conditions, described by ρ, a large number of times.

In this approach, spectral measures appear as special idealized cases, called decision
observables in [3], ordinary observables in [4] and sharp observables in [6]. The first
moment operator F [1] of an observable F accounts for the expectation value Tr[ρF [1]]
of the probability distribution Fρ . The knowledge of the expectation values Tr[ρF [1]], for all
states ρ, determines the operator F [1] and thus its spectral measure EF [1] as well. In general,
it does not determine the semispectral measure F. But the examples of sections 3.1 and 3.2
show that there are cases where this does happen.

To help analyse the question of the physical meaning of the self-adjoint operator F [1]
and its spectral measure EF [1] for N-/Z-covariant semispectral measures F, we consider the
resulting probability measures and their variances.
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From the probabilistic point of view, the spectral and semispectral measures associated
with F [1] are quite different. For while the probability distributions Fϕ,ϕ and EF [1]

ϕ,ϕ in any
vector state ϕ ∈ H, ‖ϕ ‖= 1, have the same expectations∫

σ (F [1])
x dEF [1]

ϕ,ϕ (x) = 〈ϕ|F [1]ϕ〉 =
∫ 2π

0
x dFϕ,ϕ(x) (18)

their other moments are different. In particular, their variances are different:

Var(Fϕ,ϕ) =
∫
x2 dFϕ,ϕ(x)−

(∫
x dFϕ,ϕ(x)

)2

= 〈ϕ|F [2]ϕ〉 − 〈ϕ|F [1]ϕ〉2

= 〈ϕ|F [2]ϕ〉 − 〈ϕ|F [1]2ϕ〉 + 〈ϕ|F [1]2ϕ〉 − 〈ϕ|F [1]ϕ〉2

= 〈ϕ|(F [2] − F [1]2)ϕ〉 + Var
(
EF [1]
ϕ,ϕ

)
� Var

(
EF [1]
ϕ,ϕ

)
. (19)

This relation is sometimes taken to suggest that F could be regarded as a smeared or noisy
version of EF [1], since, in a vector state ϕ, the variance of F is greater by a noise term
〈ϕ|(F [2] − F [1]2)ϕ〉 than the variance of EF [1].

A smearing of, or noisy version of, EF [1] is typically obtained by convolving it with a
density function f , that is, a nonnegative Borel function f : R → R, possibly supported
by [0, 2π], such that

∫
f (x) dx = 1 (see, e.g., [22, 6]). The semispectral measure

EF [1],f : X �→ (χ
X

∗ f )(F [1]) obtained in this way is commutative9.
All the (nontrivial) N-covariant semispectral measures of section 3.1 are noncommutative.

In contrast, convolutions of spectral measures with probability densities are commutative
semispectral measures and none of them is N-covariant. Note also that if the average of a
smearing function f is zero,

∫
xf (x) dx = 0, then the first moment operator of EF [1],f is

again F [1], but, clearly, it cannot determine EF [1],f .
We conclude that the self-adjoint operators F [1] of section 3.1 constitute examples of

self-adjoint operators which represent different observables F and EF [1]. Their measurement
outcome statistics, described by the probability measures Fϕ,ϕ andEF [1]

ϕ,ϕ , are different, though
they are indistinguishable by the statistical average. Their difference becomes evident, for
instance, in their standard deviations. From the statistical point of view one may say that
EF [1] is the observable associated with F [1] which has the least variance [17], whereas F is
the observable associated with F [1] which is N-covariant.

Among the solutions of Z-covariant semispectral measures there are also commutative
measures, including the canonical spectral measure Fcan. However, convolutions of Fcan

which have Fcan[1] as the first moment cannot be Z-covariant. Therefore, also in this case, the
(noncovariant) spectral measure and the (covariant) semispectral measures of the self-adjoint
moment operatorsF [1] seem to represent different, though in the sense of the statistical mean,
indistinguishable observables. It is also worth noting that among the commutative Z-covariant
semispectral measures F there is no smearing of Fcan which would have the same first moment
as Fcan.

Finally, section 3.3 gives examples of R-covariant semispectral measures which can
be interpreted as smeared or unsharp versions of the sharp R-covariant spectral measure
EQ. In that case, however, the first moment operator Q of an R-covariant semispectral
measure EQ,f does not suffice to determine the whole semispectral measure. We recall
from [1, theorem 3.3.2] that if the density function f has finite mean and variance, then
9 In fact, any commutative semispectral measures can be represented as a probability average of a unique spectral
measure [23] (see also [8, section 2.1.3.] and [7, theorem 3.1.3]).
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Var
(
E
Q,f
ϕ,ϕ

) = Var
(
EQϕ,ϕ

)
+ Var(f ) for any sufficiently smooth vector states ϕ ∈ L2(R), that is,

the noise term 〈ϕ|EQ,f [2] − EQ,f [1]2|ϕ〉 is then simply Var(f ).
Apart from the results detailed above, some examples of this kind go against too facile an

understanding of how symmetries of a quantum-mechanical system show up. It would seem
to be the established wisdom amongst physicists that if a quantum-mechanical system has
a certain symmetry (in the usual sense), then this must be reflected in the experimental
arrangements for the system. Conversely, if recorded data evidences a symmetry, that
symmetry must be present in the system. The opposite is also felt to hold: if the system
has no symmetry, no symmetry should show up in the data and conversely.

Reasonable as this seems, when it comes to turning these statements into mathematical
terms, our examples show that things are not as cut and dried as this. To see that, consider
once more a simple case of an N-covariant semispectral measure and its first moment operator
taken from [10]. Fix a pair of non-negative integers s, t and a complex number z = |z| eiϕ ,
with |z| � 1. The semi-spectral measure in question is, for every Borel subset X ⊆ [0, 2π),

F(X) = 1

2π

∫
X

dx +
z

2π

∫
X

ei(t−s)x dx|s〉〈t| +
z

2π

∫
X

e−i(t−s)x dx|t〉〈s|. (20)

The spectral decomposition of the first moment operator of F is now simply

F [1] = πPπ +

(
π +

|z|
t − s

)
P+ +

(
π − |z|

t − s

)
P− (21)

where

P+ = 1
2 [|s〉〈s| + |t〉〈t| + i(e−iϕ |t〉〈s| − eiϕ |s〉〈t|)]

P− = 1
2 [|s〉〈s| + |t〉〈t| − i(e−iϕ |t〉〈s| − eiϕ |s〉〈t|)]

Pπ = I − |s〉〈s| − |t〉〈t|.
Thus, F [1] is seen to have three eigenvalues, of which π is infinitely degenerate and the other
two non-degenerate.

The probability measures for the states of the system obtained from F show a continuous
symmetry, translations in [0, 2π) (mod 2π), but this symmetry is not possessed by the
first moment operator F [1]. Moreover, this is not simply a matter of F being an inferior
measurement scheme for F [1], since one can use the data obtained from these F-probability
measures to (mathematically) reconstruct F [1]. Conversely, were one to measure F [1] and
obtain the complete spectral information, one could (mathematically) construct F. In terms of
quantum-mechanical information obtainable in principle, therefore, they are equivalent and
complete (in the Copenhagen sense). We, at any rate, find this surprising.

Sufficiently so that one must wonder if this is a phenomenon associated only with the
systems we have considered. Is there something like this associated with maximal, but not
self-adjoint, operators such as the ‘momentum’ operator on L2([0,∞))? Also the case of
R-covariant systems calls for further studies in that respect. There, work is in progress but a
report will have to wait for another publication in the near future.
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